

ETSI AERONÁUTICA Y DEL ESPACIO UNIVERSIDAD POLITÉCNICA DE MADRID

PR-CL-001.- COORDINACIÓN DE LAS ENSEÑANZAS

GUÍA DE APRENDIZAJE

CURSO 2017/18

Carácter OP

Créditos 4 ECTS

ÍNDICE

- 1. DESCRIPCIÓN DE LA ASIGNATURA
- 2. CONOCIMIENTOS PREVIOS
- 3. COMPETENCIAS
- 4. RESULTADOS DE APRENDIZAJE
- 5. PROFESORADO
- 6. PROGRAMA
- 7. PLAN DE TRABAJO
- 8. SISTEMA DE EVALUACIÓN
- 9. RECURSOS DIDÁCTICOS
- 10. OTRA INFORMACIÓN

Código	145009005		
_	DISEÑO CONCEPTUAL DE AEROGENERADORES	5	
	CONCEPTUAL DESIGN OF WIND TURBINES		
Materia			
Especialidad	COMÚN	Curso	CUARTO
Idiomas	CASTELLANO	Semestre	OCTAVO

PLAN 14IA - GRADO EN INGENIERÍA AEROESPACIAL

1. DESCRIPCIÓN DE LA ASIGNATURA

Se trata de una asignatura que pretende que el alumno adquiera conocimiento adecuado y aplicado de la ingeniería eólica. Se hace especial hincapié en los métodos de cálculo de diseño y proyecto de aerogeneradores; el uso de los parámetros más significativos en la aplicación práctica; así como en la simulación del comportamiento y el diseño de aerogeneradores.

2. CONOCIMIENTOS PREVIOS

a) CONOCIMIENTOS PREVIOS NECESARIOS para seguir con normalidad la ASIGNATURA.

Asignaturas superadas:

Otros requisitos:

Aerodinámica y Aeroelasticidad.

b) CONOCIMIENTOS PREVIOS RECOMENDADOS para seguir con normalidad la ASIGNATURA.

Se recomienda tener superadas las Asignaturas:

Otros Conocimientos:

Aconsejable Matlab.

3. COMPETENCIAS

- **CG3.** Capacidad para identificar y resolver problemas aplicando, con creatividad, los conocimientos adquiridos.
- **CG9.-** Razonamiento crítico y capacidad de asociación que posibiliten el aprendizaje continuo.
- **CE.-** Conocimiento adecuado y aplicado a la Ingeniería de: Los sistemas de aprovechamiento de energía eólica.
- **CE.-** Conocimiento adecuado y aplicado a la Ingeniería de: los métodos de cálculo de diseño y proyecto de aerogeneradores; el uso de los parámetros más significativos en la aplicación teórica; la simulación, diseño, análisis e interpretación de experimentación, operación, mantenimiento y certificación de aerogeneradores.
- **CE.-** Conocimiento aplicado de: aerodinámica; mecánica, ingeniería de aerogeneradores y teoría de estructuras aplicada al problema eólico.

4. RESULTADOS DE APRENDIZAJE

- **RA01.** Conocimiento, comprensión y aplicación de la aerodinámica de los rotores, las actuaciones y la controlabilidad de aerogeneradores.
- **RA02.** Conocimiento, comprensión, aplicación y análisis del diseño preliminar de aerogeneradores y sus costes operacionales.
- RA03.- Conocimiento de la simulación computacional del problema de diseño del aerogenerador.

5. PROFESORADO

Departamento: AERONAVES Y VEHÍCULOS ESPACIALES **Coordinador de la Asignatura:** Óscar LÓPEZ GARCÍA

Profesorado	Correo electrónico	Despacho
CUERVA TEJERO, Álvaro	alvaro.cuerva@upm.es	
GALLEGO CASTILLO, CRISTÓBAL JOSÉ	<u>cristobaljose.gallego@upm.es</u>	
GANDÍA AGÜERA, Fernando	fernando.gandia@upm.es	
LÓPEZ GARCÍA, Óscar	oscar.lopez.garcia@upm.es	
RODRÍGUEZ SEVILLANO, Ángel	angel.rodriguez.sevillano@upm.es	

Los horarios de tutorías estarán publicados en página web del DAVE.

6. TEMARIO

- Tema 1. INTRODUCCIÓN AL DISEÑO CONCEPTUAL DE AEROGENERADORES.
 - 1.1. Introducción al recurso y a la tecnología. 1.2. Criterios de diseño. 1.3. Normas de diseño. IEC 61400-1.
- Tema 2. AERODINÁMICA DEL ROTOR.
 - 2.1. Teoría de cantidad de movimiento. 2.2. Teoría del elemento de pala. 2.3. Combinación TCM-TEP. 2.4. Correcciones TCM-TEP. 2.5. Implementación en Matlab.
- Tema 3. OPTIMIZACIÓN AERODINÁMICA DEL ROTOR.
 - 3.1. Definición del problema de optimización. 3.2. Optimización del parámetro de funcionamiento. 3.3. Implementación en Matlab.
- Tema 4. ACTUACIONES Y CONTROL ESTACIONARIO.
 - 4.1. Curva de potencia. 4.2. Leyes de velocidad angular y ángulo de paso. 4.3. Mapas de coeficientes de potencia, par y tracción. 4.4. Implementación en Matlab.
- Tema 5. DETERMINACIÓN DE LA PRODUCCIÓN ENERGÉTICA DEL AEROGENERADOR.
 - 5.1. Cálculo de la energía anual producida. 5.2. Factor de capacidad. 5.3. Introducción al coste de la energía. 5.4. Implementación en Matlab.
- Tema 6. DIMENSIONADO BÁSICO EL AEROGENERADOR I. DETERMINACIÓN DEL RADIO.
 - 6.1. Determinación del radio. 6.2. Relación entre radio y velocidad nominal. 6.3. Potencia específica y radios factibles. 6.4. Limitación de velocidad en punta de pala. 6.5. Tipos de curva de potencia. 6.6. Mapas de decisión del radio basados en mínimo coste de la energía. 6.7. Implementación en Matlab.
- Tema 7. EVALUACIÓN ESTADÍSTICA DE COSTES DE OPERACIÓN.
 - 7.1. Análisis de costes. 7.2. Modelo estadístico de costes de componentes y de operación. 7.3. Determinación del coste de la energía. 7.4. Implementación en Matlab.

7. PLAN DE TRABAJO

a) Cronograma.

Semana Nº			Otra actividad presencial	Actividad de Evaluación	
1	Introducción y Definición del problema. La máquina				
2	Aerodinámica del rotor	Introducción WTToolBox			
3	Aerodinámica del rotor	Aerodinámica del rotor			
4	Optimización aerodinámica del rotor	Perfiles aerodinámicos de aerogeneradores			
5		Optimización aerodinámica del rotor			
6	Actuaciones y control estacionario	Redacción y presentación en contextos técnicos			
7		Actuaciones y control estacionario			
8	Determinación producción energética anual	Determinación producción energética anual			
9	Dimensionado básico del rotor	Determinación producción energética anual			
10		Dimensionado básico del rotor			
11		Dimensionado básico del rotor			
12	Dimensionado preliminar de componentes				
13		Dimensionado preliminar de componentes			
14				Presentaciones públicas en grupo	
15				Presentaciones públicas en grupo	
16				Prueba de evaluación individual final de la asignatura	

b) Metodologías Docentes.

Métodos Docentes	EPD	LM	PL	RPA	TP	PBL*
ECTS 4	1	1	0.75			1.25

EPD: ESTUDIO PERSONAL DIRIGIDO

LM: LECCIÓN MAGISTRAL

PBL: APRENDIZAJE BASADO EN PROYECTOS
PL: PRÁCTICAS DE LABORATORIO
RPA: RESOLUCIÓN DE PROBLEMAS EN EL AULA

TP: TUTORÍAS PROGRAMADAS

^{*}Otros (especificar):

8. SISTEMA DE EVALUACIÓN

a) Tribunal de Evaluación.

Presidente:	Oscar LÓPEZ GARCÍA
Vocal:	Cristóbal José GALLEGO CASTILLO
Secretario:	Alvaro CUERVA TEJERO
Suplente:	Angel RODRÍGUEZ SEVILLANO

b) Actividades de Evaluación.

Semana Nº	Descripción	Tipo Evaluación	Técnica Evaluativa	Duración	Peso	Nota mínima	Competencias
14 y 15	Informe y presentaciones públicas en grupo (IyPP)			10 min. /grupo	0- 100%	5 (sobre 10)	Todas
16	Prueba de evaluación individual final de la asignatura (PEIF)			1.5 horas	0- 100%	5 (sobre 10)	Todas

c) Criterios de Evaluación.

Los alumnos que obtengan IyPP>=5 no requieren hacer Prueba de evaluación individual final de la asignatura. La nota final, NF, resultará de aplicar la expresión siguiente

Si IyPP>=
$$5$$
 NF= IyPP
Si IyPP< 5 NF = PEIF

9. RECURSOS DIDÁCTICOS

Descripción	Tipo	Observaciones
Alvaro Cuerva, Oscar López y Cristóbal J. Gallego "Diseño Conceptual de Aerogeneradores" Publicaciones de la ETSIAE, UPM.	Bibliografía	
BURTON, T., ET AL., "Wind Energy Handbook". Ed. John Wiley & Sons, Chichester, 2001.	Bibliografía	
HANSEN, MARTIN O.L., "Aerodynamics of wind turbines: rotors, loads and structures". Ed. James & James London, 2000.	Bibliografía	
RODRÍGUEZ AMENEDO, J., ARNALTE GÓMEZ, L., BURGOS DÍAZ, J., "Sistemas eólicos de producción de energía eléctrica". Rueda, Madrid, 2003.	Bibliografía	

Descripción	Tipo	Observaciones
HARRISON, R., HAU, E., SNEL, H., "Large wind turbines: design and economics". Ed. John Wiley and Sons Chichester, 2000.	Bibliografía	
"IEC 61400-1". Ed 3.	Bibliografía	
Espacio MOODLE de la asignatura http://moodle.upm.es/	Recursos Web	En esta plataforma se incluyen documentos docentes básicos de la asignatura, enlaces, test de autoevaluación, ejercicios propuestos y resueltos, etc. y se utiliza como método de comunicación de avisos y solución de dudas.

10.OTRA INFORMACIÓN